Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yi Zhang^{a,b} and Cheng Ma^a*

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bZhejiang Tianyu Pharmaceutical Co. Ltd, Taizhou 318020, People's Republic of China

Correspondence e-mail: mcorg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.056 wR factor = 0.187 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*)-Dimethyl 4-butylamino-5-(4-methylstyryl)furan-2,3-dicarboxylate

The title compound, $C_{21}H_{25}NO_5$, was synthesized *via* a thiazole carbene-mediated multicomponent reaction. Without π - π stacking or other weak intermolecular interactions, the crystal packing is controlled by van der Waals forces.

Received 14 July 2006 Accepted 21 July 2006

Comment

Substituted furans play an important role in organic chemistry, not only as key structural units in many natural products and important pharmaceuticals (Dean, 1963; Nakanishi *et al.*, 1974), but also as useful building blocks in synthetic chemistry (Lipshutz, 1986; Raczko & Jurcak, 1995). Recently, we reported a facile synthesis of polysubstituted 3-aminofurans *via* a thiazole carbene-mediated multicomponent reaction (Ma *et al.*, 2005). In this paper, we report the crystal structure of a compound belonging to this class of heterocycles, (I).

Fig. 1 shows the structure of (I). There are no obvious π - π stacking or other weak intermolecular interactions in (I), and the crystal packing is controlled by van der Waals forces.

Experimental

To a suspension of NaH (1.2 mmol) in anhydrous CH₂Cl₂ (3 ml), a solution of 3-butyl-4-methylthiazolium bromide (1.0 mmol) in dry CH₂Cl₂ (2 ml) was added at 195 K under nitrogen. After 10-15 min, a mixture of 4-methylcinnamaldehyde (0.5 mmol) and dimethyl acetylenedicarboxylate (0.75 mmol) in CH2Cl2 (2 ml) was added over a period of 10 min, and the mixture was stirred at this temperature for 2 h. Afterwards, the reaction temperature was raised slowly to 273 K within 1 h, and kept at 273 K for an additional 5 h. The resulting mixture was carefully poured in to an ice-cooled aqueous NaHCO₃ solution and then extracted with CH2Cl2 (10 ml). The combined organic phases were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the resulting oil was purified by column chromatography [on Merck silica gel Kieselgel 60 (300-400 mesh) with a hexane-ethyl acetate mixture (2:1)] to afford the product, (I) (65 mg, yield 35%). Compound (I) was recrystallized from EtOAc as orange crystals (m.p. 391–392 K).

© 2006 International Union of Crystallography All rights reserved

Crystal data

 $\begin{array}{l} C_{21}H_{25}NO_5\\ M_r = 371.42\\ Triclinic, P\overline{1}\\ a = 5.446 \ (3) \ \mathring{A}\\ b = 10.454 \ (7) \ \mathring{A}\\ c = 18.386 \ (12) \ \mathring{A}\\ \alpha = 77.94 \ (3)^{\circ}\\ \beta = 88.97 \ (2)^{\circ}\\ \gamma = 78.68 \ (2)^{\circ} \end{array}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: none 9965 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.187$ S = 1.074536 reflections 253 parameters H atoms treated by a mixture of independent and constrained refinement $V = 1003.5 (11) Å^{3}$ Z = 2 $D_{x} = 1.229 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) KPrism, orange $0.4 \times 0.35 \times 0.12 \text{ mm}$

4536 independent reflections 2368 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$ $\theta_{\text{max}} = 27.5^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0923P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.25 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 1997) Extinction coefficient: 0.014 (4)

Atom H1, attached to N1, was found in a difference Fourier map and refined freely. The methyl H atoms were constrained to an ideal geometry [C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$] and were allowed to rotate freely about the C-C bonds. The H atoms of the methylene groups and of the aromatic ring were placed in calculated positions, with C-H distances of 0.97 and 0.93 Å, respectively, and were included in the final cycles of the least-squares refinement as riding on their carrier atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

The molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Dean, F. A. (1963). *Naturally Occurring Oxygen Ring Compounds*. London: Butterworth.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lipshutz, B. H. (1986). Chem. Rev. 86, 795-819.
- Ma, C., Ding, H., Wu, G. & Yang, Y. (2005). J. Org. Chem. 70, 8919-8923.
- Nakanishi, K., Goto, T., Ito, S., Natori, S. & Nozoe, S. (1974). Editors. *Natural Products Chemistry*, Vols. 1–3. Tokyo: Kodansha.
- Raczko, J. & Jurcak, J. (1995). Stud. Nat. Prod. Chem. 16, 639-726.
- Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.